

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functins and their first derivatives (their slopes) at selected values of x. the function h is given by h(x) = f(g(x)) - 6

X	f(x)	f'(x) slupe	g(x)	g'(x) slope
1	6	3	2	1
2	9	1	(3)	1
3	(10)	4	4	2
4	11	1	6	6
5	12	1	12	6
6	13	2	18	7

Since f and g are continuous from 22724 and h(4) = 7

4(FR) Explain why there must be a value r for $2 \le r \le 4$ such that h(r) = 5.

from
$$2 \le r \le 4$$

and $h(z) = 4$
and $h(z) = 4$
and $h(4) = 7$
 $= f(g(x)) - 6$
 $= f(g($

t (hours)	0	1	3	4	7	8	9		
L(t) (people)	120	156	176	126	150	80	0	1	

5(FR). Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by the differentiable function L for $0 \le t \le 9$. Values of L(t) at various times t are

shown in the table above.

How many times during the last 5 hours will L(t) equal 130? Give a reason for your

Guaranteed to have at least two times be cause L(t) is continuous from 04 t = 9 and L(4)=126 and L(a)=0